MODBUS integration for ONE Series

Instructions and examples for a remote control of ONE devices using MODBUS protocol

Review: 3

Support Handbook

1 INTRODUCTION

This handbook details how to **manage ONE devices using MODBUS protocol**. The following sections explain the requirements that must be adapted in order to configure the units.

Chapter 3 APPLICATION EXAMPLE: CONNECTION AND SETUP OF USR-N510 CONVERTER shows how to control an ONE device remotely using an external MODBUS-TCP to MODBUS-RTU converter. In this case, we will use a PC as MODBUS protocol's master.

1.1 MODBUS

MODBUS is a communication protocol between devices based on queries from the main device, defined as "Master"; to other devices that will receive those queries. Those receivers will be called "Slaves".

On ANNEX I: Definitions these concepts will be explained in detail.

1.2 MODBUS integration for ONE

ONE integrates MODBUS protocol in its version MODBUS-RTU, using the serial bus RS-485 as a physical channel for the communications.

ONE 500 devices have a **slave** role in the bus, executing the master's requirements. These functionalities are available at ONE devices with firmware version v01.00.03.01 or newer.

2 MODBUS INTERFACE CONFIGURATION IN ONE

2.1 ONE local setup

The integration of MODBUS protocol with ONE devices is made through a RS-458 port, that is physically located on the main board as shown on *Picture 1: RS-485 port location on ONE Series.*

That RS-485 port has its own configuration parameters, that can be reached from the frontal screen interface, using the "Configuration" menu path:

• Configuration \rightarrow CIE \rightarrow RS-485 Conf.

The following parameters are the typical ones for a serial bus connection:

- Baudrate: Transmission speed of the serial bus, measured on baud. By default, its value is 115200 bauds.
- Parity: Serial communications parity. By default, given value is "Even".
- Stop bits: Bits for the serial communication stop. By default, its value is 1.

Picture 1: RS-485 port location on ONE Series

2.2 Access level and connection security

ONE devices have different user level accesses for each configuration level.

User access level varies depending on the used interface. That means that **the access** level of the frontal screen of ONE will be different to the RS-485 interface.

To change the access level for RS-485 interface, the CIE485_MODBUS_ACCESS_LEVEL variable, which has been explained in the previous section, must be used.

Communications between the master and the slave use a defined address. By default, ONE 500 has the MODBUS address 10. This value could be modified by editing the parameter CIE485_MODBUS_ADDRESS, as explained in the previous section.

3 APPLICATION EXAMPLE: CONNECTION AND SETUP OF USR-N510 CONVERTER

To manage ONE devices through the RS-485 port via MODBUS it is required to use an TCP/IP to RS-485 converter between ONE and the controller device. The device must work using the Modbus TCP option in the device webserver:

Socket A Parameters			
Work Mode:	TCP Server V ModbusTCP V		
TCP Server MAX Sockets:	8 V Up to MAX KICK V		
Local/Remote Port Number:	502 8899 (1~65535)		
PRINT:			
ModbusTCP Poll:	✓ Poll Timeout : 1000 (200~9999) ms		
Enable Net Heartbeat Packet:			
Registry Type:	None Location Connect With		

In this section the **USR-N510 bidirectional converter from TCP to RS-485** and its configuration system will be used as example to explain how to set the system. The converter will be used to emulate a communication with ONE through an external software called *Modbus Poll*. Nevertheless, general information about that setup can also be used on any other converter device or similar systems.

A TCP-RS-485 bidirectional converter will be used to control a ONE device via MODBUS protocol through the RS-485 port.

This system can be used to **modify and manage the ONE system variables parameters** using an external application. The application will need a system configuration similar to the one shown at *Picture 2: Communication performance between MODBUS RTU and ONE.*

Picture 2: Communication performance between MODBUS RTU and ONE

3.1 USR-N510 connection

Using the USR-N510 converter module as example of external device, some steps should be followed to a proper installation.

The device will get started after the user connects its power supply, and the "PWR" red LED will light on. This LED is located on the connector side of the equipment. At *Picture 3: Status LEDs disposition* the LED cluster is marked as 1st. The LED that indicates the power connection is the lower left LED, located at the red marked square. The other LEDs refer to the current work status of the device performance.

Picture 3: Status LEDs disposition

The USR-N510 should be connected to the network to manage ONE devices. The connection should be done via its Ethernet port, located at the upper side of the device.

Connection to ONE devices must be done using the RS-485 port. To use the RS-485 port of the USR-N510, we must connect the RS-485 to RS-232 adapter as shown on *Picture 3: Status LEDs disposition,* (port marked as 2nd).

After connecting the adapter, the wiring from RS-485 must be done to ONE poles T+(A), T-(B) and GND. See Table 1: RS-485 equivalences between ONE and USR-N510 for further information:

MODBUS integration for ONE Series

USR-N510	ONE
T+(A)	A+
T+(B)	В-
GND	GND

Table 1: RS-485 equivalences between ONE and USR-N510

To make the connection to RS-485 on ONE Series, it is recommended to use a 3 ways (3,81 mm) euroblock. Please verify the pin connection before finishing the installation.

NOTE: At **ONE extended systems** (multiple ONE devices), it is important to know which **device has the direct connection to the Modbus master device**, because this ONE will execute the commands. It is important to notice that the master ONE device has particular features that affect the extended system.

3.2 USR-N510 local setup

In order to configure the entire system, serial bus parameters must be the same as the ones configured in ONE.

To enable the RS-485 port on USR-N510, the switches on the back side of the device must be turned up, as shown on *Picture 4: Switch disposition to RS-485 performance.*

Picture 4: Switch disposition to RS-485 performance

The device has its own dedicated software (<u>USR-TCP232-M4K3</u>). It is also possible to make all settings from the application hosted on the device's IP address.

To access to it, the device IP address once connected to a network, by default it is (<u>192.168.0.7</u>). Default user name and password can be found at *Table 2: Default credentials to USR-N510 configuration software*.

User name:	admin
Password:	admin

Table 2: Default credentials to USR-N510 configuration software

NOTE: Network access to USR-510 device is mandatory. That means it is necessary to reach the devices through a local network.

Once the setup application is started, *Current Status* window shows the general configuration parameters. Only *PORT 1* section needs to be edited, and so, it is possible to leave the rest of the dependencies as configured by default.

	parameter
Baud Rate:	115200 bps(600~230400)bps
Data Size.	
Parity:	Even 🗸
Stop Bits:	1 ♥ bit
Flow Control:	None 🗸
UART Packet Time:	0 (0~255)ms
UART Packet Length:	0 (0~1460)chars
Sync Baudrate(RF2217 Similar):	
Enable Uart Heartbeat Packet:	
Socket A	Parameters
Socket A Work Mode:	Parameters TCP Server None
Socket A Work Mode: Local/Remote Port Number:	None 8899 8899 (1~65535)
Socket A Work Mode: Local/Remote Port Number: PRINT:	None ✓ 8899 8899 (1~65535)
Socket A Work Mode: Local/Remote Port Number: PRINT: ModbusTCP Poll:	Parameters TCP Server ▼ None 8899 8899 (1~65535) □ Poll Timeout : 200 (200~9999) ms
Socket A Work Mode: Local/Remote Port Number: PRINT: ModbusTCP Poll: Enable Net Heartbeat Packet:	Parameters TCP Server ▼ None 8899 8899 (1~65535) □ Poll Timeout : 200 (200~9999) ms
Socket A Work Mode: Local/Remote Port Number: PRINT: ModbusTCP Poll: Enable Net Heartbeat Packet: Registry Type:	Parameters TCP Server ▼ None 8899 8899 0 1~65535) 0 (200~9999) ms 0 Location Connect With ▼
Socket A Work Mode: Local/Remote Port Number: PRINT: ModbusTCP Poll: Enable Net Heartbeat Packet: Registry Type: Socket B	Parameters TCP Server ▼ None 8899 8899 8899 (1~65535) □
Socket A Work Mode: Local/Remote Port Number: PRINT: ModbusTCP Poll: Enable Net Heartbeat Packet: Registry Type: Socket B Work Mode:	Parameters TCP Server ▼ None 8899 8899 8899 (1~65535) □ 0 Poll Timeout : 200 (200~9999) ms 0 □ Vone Vone Vocation Connect With ▼ Parameters NONE ▼

Picture 5: USR-N510 setup (PORT 1 section)

By default, the main window view is *Current Status*. On this guide only *PORT 1* will be configured. Required configuration of *PORT 1* is shown at *Picture 5: USR-N510 setup* (*PORT 1 section*). Values must coincide with linked ONE device's values. In case of any modification, that modification should be done on both devices.

3.3 COM ports setup from PC

After the the device is configured, a COM port must be opened between the USR-N510 and the server. It is recommended by the manufacturer to use the dedicated software <u>USR-VCOM</u>.

When the USR-N510 device is connected to the network, the user will have to select the Smart VCOM label to search the device available COM ports. By selecting those devices

(Select All option), the virtual ports will be created.

Once the ports are opened, the software shows these ports on a main window, either if they are network connected or not *(Connected or Connection Failed)* at the *Next State labelled* column. Opened COM ports will be listed at *Device Name* column. *Picture 6: Smart V-COM section* shows these software windows, with the steps overwritten in red.

Smart VCOM					
#	Device type	Device MAC	Device IP	Device name	State
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
☑ 1	E45-Port0	D8B04CE87074	192.168.0.7	USR-N510	
				2º)	3º)
Select	all 1º)	Re	scan	Rext	+ Finish
Click "next", config the mark the device and create virtual serial ports.					

Picture 6: Smart V-COM section

3.4 Communication with ONE via Modbus Poll

Once the COM port communication is created, the transmission between the *master* device (that can be wherever on the network) and the *slave* (ONE, in this case) is set. To use that communication it is possible to work with an external application. In this Handbook, <u>Modbus Poll</u>¹ is used to perform a simulation of a master controller.

On the software main window, select Connection \rightarrow Connect.

In the Serial Port connection type the requested parameters must be set using the same values as the ones used on the ONE device. A COM port must be opened and configured according to 3.3 COM ports setup from PC section. This port must be available, no other software at the server should be using the same port.

It is mandatory to test that the *Net State* is *Connected* on USR-VCOM software before using it.

Picture 7: Modbus Poll network configuration shows the parameters, according to ONE default values. Also, the configuration must always be the same as the previous menu configuration plus selection of RTU performance (Mode \rightarrow RTU).

¹ NOTE: For extra information about Modbus Poll software, kindly consult the manufacturer user manual.

Connection Setup		×
Connection Serial Port	•	ОК
Serial Settings ELTIMA Virtual Serial Port 115200 Baud 8 Data bits Even Parity	(COM1) •	Cancel Mode RTU ASCII Response Timeout 1000 [ms] Delay Between Polls
1 Stop Bit	Advanced	10 [ms]
IP Address or Node Name		
Server Port 502	Connect Timeout 3000 [ms]	 ● IPv4 ○ IPv6

Picture 7: Modbus Poll network configuration

After these configurations are made, it is possible to manage the ONE Series parameters from the master controller software. It can be done just by selecting any cell at 00000 column at the *poll configuration* table.

Once a cell is selected, a new window gets opened. In this window, the command that would be sent to the ONE device can be written. From here it can be sent to other ONE devices connected to the network. The required values are:

- *Slave ID*: ONE device identifier according to Modbus (value by default: 10). See 2.2 Access level and connection security .
- *Address*: Variable or register address to be modified. By default, it requires the decimal address value.²
- Value: Desired new value for that variable.

Option 16: Write multiple registers should be selected on "Use function" section.

Those inputs are marked at Picture 8: TEST function for ONE Series from Modbus Poll.

² **NOTE:** Under the exceptions discussed onto Error: No se encuentra la fuente de referencia Error: No se encuentra la fuente de referencia.

MODBUS integration for ONE Series

Write Single	Reaister			×
<u>S</u> lave ID:	10		Send	
<u>A</u> ddress:	4098		Cancel	
<u>v</u> aiue.	1			
Result N/A				
Close of	dialog on "Respo	nse ok"		
Use Funct	tion rite s <u>i</u> ngle registe rite <u>m</u> ultiple regi	er sters		
Request				
RTU				
0A 10	10 02 00 01 02	00 01 04	4 83	
ASCII				
3A 30 30 32	41 31 30 31 30 30 30 30 31 44	30 32 30 30 0D 0	0 30 30 31 A	
			,	

Picture 8: TEST function for ONE Series from Modbus Poll

EXAMPLE: *Picture 8: TEST function for ONE Series from Modbus Poll* shows an example of writing of the variable 0x1003 (4099 on decimal, 4098 used in this software), that represents the TEST function on ONE devices interface

Clicking on Send automatically activates this command to the ONE device.

In the *Request* \rightarrow *RTU* section on this window, the Modbus frame that modifies the device parameters is generated. In order to test this, the application function *Web to serial* can be used. It is located at the IP address of the connected USR-N510 converter, (by default <u>192.168.0.7</u>).

Picture 9: TEST function activation command on ONE device sent via USR-N510 shows the copied Modbus frame, on the second box. By clicking on button send hex data the frame will be transmitted and the ONE Series device will execute it. The frame line must have no spaces.

firmware revision: v3	031	中文
	USR IOT Be He	onest, Do Best!
Current Status	parameter	help 🄶
Local IP Config	Websocket connection: 0	• web to serial
PORT1	Receive HEX: 0xa 0x10 0x10 0x2 0x0 0x1 0xa5 0xb2	this page use websocket to
Web to Serial		transmit data between webpage
Misc Config		and uart
Reboot		
	eA10100200010200010483 send ascii data send hex data clear	
Copyright © 2009 - 20	015 · JiNan Usr IOT Technology Limited	website: <u>www.usriot.com</u>

Picture 9: TEST function activation command on ONE device sent via USR-N510

ANNEX I: Definitions

- Master: Controller device that starts a communication request.
- Slave: Receiver device, passive, that answers the master queries.
- **RS-485:** Communications standard that implements a multipoint serial bus based on differential transmission.
- Modbus: Communication protocol based on master-slave relationships.
- **Modbus RTU:** Modbus transfer mode designed to be used by devices under the electrical standards RS-232, RS-485 and RS-422.
- **Modbus TCP:** Modbus transfer mode designed to work at TCP/IP networks.
- **Modbus TCP to Modbus RTU converter:** Device used to transform from Modbus RTU to Modbus TCP protocol.

On this guide, an **USR-N510 converter** model is used as example, connected to the local network.

 Modbus master simulator: Software used to simulate the master controller. It is an application that manages the ONE parameter values. This will be in charge of developing the RTU data packages to ONE.

ANNEX II: Advanced edition of ONE variables

Some advanced configurations are based on ONE devices internal variables. Each of these variables has an unique identifier, labelled as ID. With that identifier, users may check the variable status and also modify its value (in case this user has authorisation).

To access to an advanced configuration variable, the OK and BCK buttons on the front interface must be pressed simultaneously for 2 seconds. After that, a special screen will be shown. In this screen, the user will enter the ID. If necessary, the user will be asked to register with the required access level by the variable. If he does not have enough access level, it will be denied.

ANNEX III: Modbus Commands Overview

Modbus command frames are determined by the Modbus protocol and its specification. These frames are usually called ADU (Application Data Unit) inside Modbus context. For a complete information it is recommended to visit their official website <u>https://modbus.org</u>.

For more information on the MODBUS integration variables for ONE please consult your LDA sales partner.

However, below there are a some key points in order to understand how Modbus works and how a valid Modbus command can be built:

- Data encoding: Modbus uses a "big-endian" representation for addresses and data items.
- Data models: Modbus allows designers to define 1-bit or 16-bits data operations. In this case, ONE implements a 16-bits register data model.

- Function Codes: Modbus protocol defines different operations that Modbus devices can perform between them. The function code to use will depend on what data model and what kind of access is implemented on target device. In our case, ONE uses 16-bits register data model with this available operations:
 - Read Holding Registers: function code **03** ("03" in hex)
 - Write Multiple Registers: function code **16** ("10" in hex)
- Command frame contents:

Address	Function Code	Data	CRC
(1 byte)	(1 byte)	(N bytes, depends on selected function)	(2 bytes)

At this point we are able to analyze Modbus commands at a very low level and see what's inside them. Here we will review the first one:

- Performed operation: set "Master PA volume" to 0 dB value.
- ONE's variable address: "1500" in hexadecimal.
- Modbus command: "0A 10 14 FF 00 01 02 00 00 95 6E".
- Command decoding:
 - <u>Address</u> (1 byte): hex value "**0A**". Matches address 10 in decimal, wich is ONE's Modbus default address.
 - <u>Function Code</u> (1 byte): hex value "**10**" ("Write Multiple Registers" operation, with decimal value of 16).
 - Data (these are the parameters for "Write Multiple Registers" operation):
 - Starting Address (2 bytes): hex value "14FF". This means register "1500"
 - Quantity of Registers (2 bytes): hex value "0001". This variable has only 1 block length, so we just need to write one register.
 - Byte Count (1 byte): hex value "02". Each register has two bytes length, and that's the size we need to write.
 - Registers Value (N x 2 bytes): hex value "0000". Here is were we set the desired value to be written. In this case we are sending zero to set a volume of 0 dB.
 - <u>CRC</u> (2 bytes): hex value "**956E**". This value comes from the calculation of the check value specified by Modbus protocol.